## A Simple Route to New N(3)-Substituted 5-Aryl-2-(dialkylamino)-1,3oxazolium Salts and N(1)-Substituted 4-Aryl-2-(dialkylamino)-1*H*-imidazoles

by Torsten Moschny and Horst Hartmann<sup>1</sup>)\*

Fachbereich Chemie- und Umweltingenieurwesen, Fachhochschule Merseburg, Geusaer Strasse, D-06217 Merseburg

Dedicated to Prof. Dr. S. Daehne on the occasion of his 70th birthday

In the reaction of *N*,*N*-dialkyl-dichloromethaniminium chlorides **11** with 2-aminoacetophenones **12**, a general and simple route to heretofore unknown 5-aryl-substituted 2-(dialkylamino)-1,3-oxazolium salts **13** and 5-aryl-substituted 2-(dialkylamino)oxazoles **14** was found. From the 2-(dialkylamino)-1,3-oxazolium salts **13** were obtained after alkylation with  $(MeO)_2SO_2$ . The new oxazolium salts **13** were converted to 1-substituted 4-aryl-2-(dialkylamino)-1*H*-imidazoles **9** by treatment with NH<sub>4</sub>OAc. The possible use of these 1*H*-imidazoles as dye educts was explored. Analytical data, as well as AM1 calculations, reveal some remarkable differences between the structures of the neutral imidazoles **9** and their positively charged oxazolium precursors **13**.

**Introduction.** – *N*,*N*-Dialkylanilines **1** are versatile starting materials for the preparation of organic dyes [1]. Due to the high reactivity at C(4), they are able to react with various types of electrophilic reagents, *e.g.*, with aromatic diazonium salts [2], squaric acid [3] or other reactive carbonyl derivatives [4], to give products that are important as dyestuffs or their intermediates [5]. The iso-electronic structure of the five-membered 2-(dialkylamino)-substituted heterocycles 2-6 to *N*,*N*-dialkylanilines led to an increasing interest in these compounds for the same or similar fields of application. For instance, *N*,*N*-disubstituted 2-aminothiophenes **2** [6], 2-aminoselenophenes **3** [7], 2-aminothiazoles **4** [8], and 2-aminoselenazoles **5** [9] were successfully transformed into different types of organic dyes by the reaction with appropriate dyeforming reagents at C(5) [10]. Some of these dyes exhibit unconventional properties, *e.g.*, interesting for NLO applications [11].



Although *N*,*N*-disubstituted 2-aminoimidazoles **6** are also structurally analogous to *N*,*N*-dialkylanilines, only little is known about their chemistry [12] and ability to form organic dyes [13][14]. Because of their biological activity, they have attracted more attention for pharmaceutical purposes [15].

<sup>1)</sup> Fax: +49-3461-462192; e-mail: horst.hartmann@cui.fh-merseburg.de.

Currently, the mostly applied synthetic route to five-membered 2-amino heterocycles is the well-known *Hantzsch* reaction of a halogenomethyl ketone with amides or urea derivatives [7][16–19]. However, while the unsubstituted 2-aminoimidazole **6**  $(R_2N = H_2N, R^1 = R^2 = H)$  was not isolable in this way when simple guanidine was used as starting material [20], 1,2-diaminoimidazoles **6** were obtained from *N*-anilinoguanidines [13][21] or guanylhydrazones [22]. Other synthetic pathways leading to **6**, *e.g.*, the reaction of isothioureas with aminoacetaldehyde diethyl acetal [15] and of 3-(pyrimidin-2-yl)oxazolin-2-imines with secondary amines [23], or the ring transformation of 2-amino-3-phenacyl-1,3,4-oxadiazolium salts [14], are of special synthetic value and have no claim to generality.

A simple and common access to electron-rich 2-(dialkylamino)-1*H*-imidazoles **6**, which could be transformed into different types of organic dyes, seemed, therefore, to be non-trivial. We report here on a new and comfortable two-step route to 1,4-disubstituted 2-(dialkylamino)-1*H*-imidazoles.

**Results and Discussion** – Attempts to prepare N(1)-substituted 2-(dialkylamino)-1*H*-imidazoles **9** by a *Hantzsch*-type synthesis, as depicted in *Scheme 1*, were not successful. Even applying a wide variation of reaction conditions, the reaction of *N*,*N*dialkyl-*N'*-arylguanidines **7** ( $\mathbb{R}^1 = \mathbb{Ph}$ ) [24] with phenacyl bromide **8** gave 2-(dialkylamino)-1,4-diphenyl-1*H*-imidazoles **9** ( $\mathbb{R}^1 = \mathbb{Ph}$ ) in only low yields (*Table 1, Method A*). Instead of the also possible *N*,*N*-disubstituted 2-amino-1,5-diphenyl-1*H*-imidazoles **10**, resulting from an inverse attack of **8** at **7**, the starting guanidines **7** were mainly recovered as hydrobromides. Hence, the *N*,*N*-dialkyl-*N'*-arylguanidines act here as *Brønsted* bases decomposing the phenacyl bromide under the applied reaction conditions [21].

Since the known synthetic methods for 1-substituted 2-aminoimidazoles were, obviously, somehow restricted, we tried to find a new route to 2-(dialkylamino)-1*H*-imidazoles **9**. Encouraged by the successful transformation of 2-(dialkylamino)-1,3-oxathiolium salts into corresponding thiazoles by ammonia [25], we envisaged the extension of this technique to appropriate 1,3-oxazolium salts. Although such a



1982

| No.                    | $R_2N$            | $\mathbb{R}^1$     | Ar                | Yield [%] <sup>a</sup> ) | M.p. [°]  |
|------------------------|-------------------|--------------------|-------------------|--------------------------|-----------|
| 9a                     | Me <sub>2</sub> N | $4-Cl-C_6H_4$      | $4-Cl-C_6H_4$     | 69 (11)                  | 137 - 138 |
| 9b                     | $Et_2N$           | $4-Cl-C_6H_4$      | $4-Cl-C_6H_4$     | 98 (6)                   | 70 - 71   |
| 9c                     | Pyrrolidin-1-yl   | $4-Cl-C_6H_4$      | $4-Cl-C_6H_4$     | 93 (7)                   | 146-147   |
| 9d                     | Morpholino        | $4-Cl-C_6H_4$      | $4-Cl-C_6H_4$     | 95 (16)                  | 146-147   |
| 9e • HClO₄             | Me <sub>2</sub> N | Ph                 | Ph                | 77                       | 185 - 188 |
| 9f                     | Me <sub>2</sub> N | $4-Me-C_6H_4$      | Ph                | 83                       | 102 - 104 |
| 9g                     | Me <sub>2</sub> N | $4-Cl-C_6H_4$      | Ph                | 94                       | 95-98     |
| 9h • HClO <sub>4</sub> | Me <sub>2</sub> N | Ph                 | $4-Me-C_6H_4$     | 73                       | 180 - 184 |
| 9i∙HClO₄               | Me <sub>2</sub> N | $4 - Me - C_6 H_4$ | $4 - Me - C_6H_4$ | 82                       | 182 - 184 |
| 9j                     | Me <sub>2</sub> N | $4-Me-C_6H_4$      | $4-Cl-C_6H_4$     | 84                       | 106 - 108 |
| 9k                     | Me <sub>2</sub> N | $4 - MeO - C_6H_4$ | $4-Cl-C_6H_4$     | 63                       | 105 - 106 |
| 9I∙HClO₄               | $Et_2N$           | $4 - Me - C_6H_4$  | Ph                | 75                       | 185 - 186 |
| 9m                     | Pyrrolidin-1-yl   | $4-Me-C_6H_4$      | Ph                | 89                       | 97 – 99   |
| 9n                     | Pyrrolidin-1-yl   | $4-Cl-C_6H_4$      | Ph                | 95                       | 108 - 110 |
| 90                     | Pyrrolidin-1-yl   | $4-Me-C_6H_4$      | $4-Cl-C_6H_4$     | 83                       | 102 - 103 |
| 9p                     | Pyrrolidin-1-yl   | $4-MeO-C_6H_4$     | $4-Cl-C_6H_4$     | 92                       | 97 – 99   |
| 9q                     | Piperidino        | $4-Cl-C_6H_4$      | Ph                | 99                       | 134-136   |
| 9r                     | Piperidino        | $4-MeO-C_6H_4$     | $4-Cl-C_6H_4$     | 94                       | 110 - 111 |
| 9s                     | Morpholino        | $4-Cl-C_6H_4$      | Ph                | 87                       | 128-130   |
| 9t                     | Morpholino        | $4 - MeO - C_6H_4$ | $4-Cl-C_6H_4$     | 91                       | 137-138   |
| 9u•HClO4               | Me <sub>2</sub> N | _                  | Ph                | 35                       | 215-217   |
| 9v•HClO <sub>4</sub>   | Me <sub>2</sub> N | -                  | $4-Me-C_6H_4$     | 55                       | 155-157   |
| 9w                     | Me <sub>2</sub> N | -                  | $4-Cl-C_6H_4$     | 47                       | 60 - 62   |

Table 1. 4-Aryl-2-(dialkylamino)-1H-imidazoles 9 and Their Hydrogenperchlorates 9-HClO<sub>4</sub>

<sup>a</sup>) By the method depicted in Scheme 3; values in parentheses refer to the *Hantzsch* method shown in *Scheme 1*.

conversion is a well-known method for preparing imidazoles from 2-alkyl- or 2aryloxazolium salts [26][27], it was hitherto not used for the synthesis of 2-aminosubstituted derivatives. The reason for this is that the necessary N(3)-substituted 2-(dialkylamino)-1,3-oxazolium salts are essentially unknown.

1,3-Oxazolium salts are usually prepared by the alkylation of oxazoles [27][28], which are in turn available from the reaction of urea derivatives with halogenomethyl ketones [19][27], or of aminomethyl ketones with carbonic-acid derivatives [26]. Unfortunately, these methods could not be applied here, since the resulting oxazolium salts do not have the desired substitution pattern to form 2-(dialkylamino)-1*H*-imidazoles **9** by a simple O/N exchange reaction.

We found that the easily available and relatively stable 2-amino-1-arylethanones 12 or their hydrobromides  $12 \cdot HBr$  [29] react with *N*,*N*-dialkyl-dichloromethaniminium chlorides 11 [30] to give 2-(dialkylamino)-1,3-oxazole derivatives under mild conditions in good yields. This cyclization was performed by heating a 2-amino-1-arylethanone 12 or its hydrobromide  $12 \cdot HBr$  with a slight excess of 11 in dry MeCN until the evolution of HCl ceased. Depending on the substituent R<sup>1</sup> of 12, 2-(dialkylamino)-substituted 5-aryl-1,3-oxazolium salts 13 or 5-aryl-1,3-oxazoles 14 were isolated (*Scheme 2*).

When 2-(arylamino)ethanones **12** ( $R^1 = Ph$ ) were used in this reaction, 2-(dialkyl-amino)-3,5-diaryl-1,3-oxazolium perchlorates **13a**-**13t** precipitated directly from the reaction mixture after addition of equimolar amounts of HClO<sub>4</sub>. In the case of 5-aryl-2-



i) HCIO<sub>4</sub>. ii) NH<sub>4</sub>OAc. iii) (MeO)<sub>2</sub>SO<sub>2</sub>

(dialkylamino)-1,3-oxazoles **14** prepared from *N*-unsubstituted 2-amino-1-arylethanone hydrobromides **12**•**HBr** ( $\mathbb{R}^1 = \mathbb{H}$ ), the products were obtained from the reaction mixture after extraction with Et<sub>2</sub>O as greasy crystals. These oxazoles **14** were converted to 5-aryl-3-methyl-1,3-oxazolium methyl sulfates **13u** – **13w** by subsequent alkylation with (MeO)<sub>2</sub>SO<sub>2</sub>. The *N*(3)-substituted 5-aryl-2-(dialkylamino)-1,3-oxazolium salts **13** listed in *Table 2* are crystalline compounds, which are sufficiently stable at moisture-free air.

The 2-(dialkylamino)-1,3-oxazolium salts **13** were converted to corresponding 2-(dialkylamino)-1*H*-imidazoles **9** by heating with NH<sub>4</sub>OAc in EtOH (*Scheme 3*). Depending on their substitution pattern, the imidazoles **9** were separated as crystals or as oily layers after addition of H<sub>2</sub>O to the reaction mixture. The oily products were transformed into non-hygroscopic hydrogenperchlorates **9**•**HClO**<sub>4</sub> by addition of HClO<sub>4</sub>. The 5-aryl-2-(dialkylamino)-1*H*-imidazoles **9**, as well as their hydrogenperchlorate salts **9**•**HClO**<sub>4</sub>, are listed in *Table 1*.

The new heterocyclic compounds 13, 14, and 9, as well as their salts, were characterized by elemental analyses, IR and NMR measurements. *Tables 3* and 4 in *Exper. Part* summarize these data, which confirm the proposed structures. Some remarkable properties of the oxazolium salts 13 and the corresponding imidazoles 9 should be mentioned.

The IR spectra of the 2-(dialkylamino)-substituted 5-aryl-1,3-oxazolium salts **13** show typically an intense absorption at *ca*. 1690 cm<sup>-1</sup>, accompanied by a somewhat weaker band at *ca*. 1650 cm<sup>-1</sup>. Both absorptions were assigned to bond-stretching modes of the localized double bonds in the (dialkylamino)-1,3-oxazolium moiety and refer to the resonance structure **13B** (*cf. Scheme 3*). An additional very strong band at *ca*. 1100 cm<sup>-1</sup> occurs only in the perchlorates **13a** – **13t** and originates from the  $ClO_4^-$ 

| No. | $R_2N$            | $\mathbb{R}^1$ | Ar                | $X^-$              | Yield [%] | M.p. [°]  |
|-----|-------------------|----------------|-------------------|--------------------|-----------|-----------|
| 13a | Me <sub>2</sub> N | $4-Cl-C_6H_4$  | $4-Cl-C_6H_4$     | $ClO_4^-$          | 80        | 300-302   |
| 13b | $Et_2N$           | $4-Cl-C_6H_4$  | $4-Cl-C_6H_4$     | $ClO_4^-$          | 72        | 267-269   |
| 13c | Pyrrolidin-1-yl   | $4-Cl-C_6H_4$  | $4-Cl-C_6H_4$     | $ClO_{4}^{-}$      | 74        | 280 - 281 |
| 13d | Morpholino        | $4-Cl-C_6H_4$  | $4-Cl-C_6H_4$     | $ClO_4^-$          | 50        | 307-309   |
| 13e | Me <sub>2</sub> N | Ph             | Ph                | $ClO_{4}^{-}$      | 88        | 230-231   |
| 13f | Me <sub>2</sub> N | $4-Me-C_6H_4$  | Ph                | $\text{ClO}_4^-$   | 72        | 155 - 157 |
| 13g | Me <sub>2</sub> N | $4-Cl-C_6H_4$  | Ph                | $\text{ClO}_4^-$   | 91        | 215 - 216 |
| 13h | Me <sub>2</sub> N | Ph             | $4-Me-C_6H_4$     | $ClO_{4}^{-}$      | 84        | 229-231   |
| 13i | Me <sub>2</sub> N | $4-Me-C_6H_4$  | $4-Me-C_6H_4$     | $\text{ClO}_4^-$   | 77        | 221-222   |
| 13j | Me <sub>2</sub> N | $4-Me-C_6H_4$  | $4-Cl-C_6H_4$     | $ClO_{4}^{-}$      | 77        | 269 - 271 |
| 13k | Me <sub>2</sub> N | $4-MeO-C_6H_4$ | $4-Cl-C_6H_4$     | $\text{ClO}_4^-$   | 74        | 239-241   |
| 13I | $Et_2N$           | $4-Me-C_6H_4$  | Ph                | $\text{ClO}_4^-$   | 73        | 225-226   |
| 13m | Pyrrolidin-1-yl   | $4-Me-C_6H_4$  | Ph                | $ClO_4^-$          | 77        | 228-229   |
| 13n | Pyrrolidin-1-yl   | $4-Cl-C_6H_4$  | Ph                | $\text{ClO}_4^-$   | 65        | 257-259   |
| 130 | Pyrrolidin-1-yl   | $4-Me-C_6H_4$  | $4-Cl-C_6H_4$     | $ClO_4^-$          | 80        | 254-256   |
| 13p | Pyrrolidin-1-yl   | $4-MeO-C_6H_4$ | $4-Cl-C_6H_4$     | $\text{ClO}_4^-$   | 77        | 218 - 220 |
| 13q | Piperidino        | $4-Cl-C_6H_4$  | Ph                | $ClO_4^-$          | 68        | 269 - 271 |
| 13r | Piperidino        | $4-MeO-C_6H_4$ | $4-Cl-C_6H_4$     | $ClO_{4}^{-}$      | 72        | 205 - 207 |
| 13s | Morpholino        | $4-Cl-C_6H_4$  | Ph                | $ClO_4^-$          | 65        | 278 - 280 |
| 13t | Morpholino        | $4-MeO-C_6H_4$ | $4-Cl-C_6H_4$     | $ClO_{4}^{-}$      | 71        | 250 - 251 |
| 13u | Me <sub>2</sub> N | -              | Ph                | MeOSO <sub>3</sub> | 68        | 178 - 180 |
| 13v | Me <sub>2</sub> N | -              | $4 - Me - C_6H_4$ | MeOSO <sub>3</sub> | 80        | 197 – 199 |
| 13w | Me <sub>2</sub> N | -              | $4-Cl-C_6H_4$     | MeOSO <sub>3</sub> | 84        | 214-216   |
|     |                   |                |                   |                    |           |           |

Table 2. 5-Aryl-2-(dialkylamino)-1,3-oxazolium Salts 13



i) NH4OAc. ii) HClO4

anion. In contrast, the most important IR absorptions of the imidazoles **9** are two groups of three sharp single bands between 1500 and 1600 cm<sup>-1</sup>, as well as between 1400 and 1500 cm<sup>-1</sup>. It is noteworthy that the IR spectra of the imidazole hydrogenperchlorates **9**•**HClO**<sub>4</sub> and their corresponding oxazolium precursors **13** are very similar.

Characteristic in the <sup>1</sup>H-NMR spectra of the 2-(dialkylamino)-1,3-oxazolium salts **13** are sharp *singlets* at *ca.* 7.9–8.2 ppm, arising from the protons at C(5). Further signals at *ca.* 3.3 ppm, and between 7.0 and 7.8 ppm were attributed to the aminoalkyl and aryl moieties, respectively. The <sup>1</sup>H-NMR signals of H-C(5) in the 1*H*-imidazoles **9**, which were found at *ca.* 7.5 ppm, result from a higher shielding in the electron-rich imidazole compared to the oxazolium precursor. The proton signals of the dialkyl-amino groups in **9** appear between 2.5 and 3.1 ppm, depending on their type, and they are slightly shifted to lower fields in the case of the hydrogenperchlorates **9**•**HClO**<sub>4</sub>.

The mass spectra of the 1,4-diaryl-2-(dialkylamino)-1*H*-imidazoles **9** are dominated by their molecular-ion peaks. In contrast to the HCN extrusion typical for 2*H*imidazoles [31], the corresponding fragmentation of dialkylcyanamides is less favored. Formation of ethynylbenzene was found to be the main fragmentation process, accompanied by dehydration of the aminoalkyl groups, or dealkylation in the cases of NR<sub>2</sub> = NMe<sub>2</sub>.

To get a deeper insight into the electronic structures of the new 1,4-diaryl-2-(dialkylamino)-1*H*-imidazoles **9** and their oxazolium precursors **13**, quantum-chemical calculations using the AM1 hamiltonian [32] were performed. The results obtained for the 2-(dimethylamino)-3,5-diphenyl-1,3-oxazolium ion (**13e**) and the corresponding imidazole **9e** are shown in the Figure.

The results reveal significant differences between the optimized structures of these compounds caused by different charges on both molecules. For instance, the planarity of the amino-N-atom, as well as the calculated bond length between C(2) and the



Fig. 1. AM-1-Optimized geometry of a) the 2-(dimethylamino)-3,5-diphenyl-1,3-oxazolium salt (13e) and b) of the 2-(dimethylamino)-1,4-diphenyl-1H-imidazole 9e

amino-N-atom of only 135.1 pm in **13e**, indicate a strong involvement of the amino group in the stabilization of the positive charge. These facts also support the strong contribution of the resonance structure **13B** to the electronic ground state of the oxazolium salts **13**. Consequently, the exocyclic amino group forces the relatively weakly bonded Ph ring at N(3) to twist nearly perpendicular to the oxazolium plane. In the imidazole **9e**, the C–N bond length of 143.5 pm, as well as the torsion angle of *ca*. 81° between the amino-N lone pair and the imidazole plane, indicate a clearly weaker interaction. Again, the calculated structure of the imidazolium ion **9e**  $\cdot$  **H**<sup>+</sup>, which is not shown here, is very similar to that of the corresponding oxazolium ion **13e**.

Different molecular charges also influence the energies of the  $\pi$  – type frontier orbitals of the compounds **13e** and **9e**. The cationic charge and the electronegative O-atom lower the HOMO energy of the oxazolium salt **13e** ( $E^{\text{HOMO}} = -12.08 \text{ eV}$ ) by *ca*. 3.7 eV compared to the neutral imidazole **9e** ( $E^{\text{HOMO}} = -8.34 \text{ eV}$ ). The LUMO energy of **13e** ( $E^{\text{LUMO}} = -4.09 \text{ eV}$ ) is also much lower than that of the imidazole **9e** ( $E^{\text{LUMO}} = -0.20 \text{ eV}$ ). Hence, a comparatively strong electrophilicity of **13e** and a high electron-donating ability of **9e** is expected.

It could be easily derived from the *Lewis* structure and the calculated electronic properties that the exocyclic dialkylamino group and the N(1)-atom enable the new (dialkylamino)-1*H*-imidazoles **9** to react in their 5-position with various electrophilic reagents. As shown in *Scheme 4*, the 2-(dimethylamino)-1*H*-imidazole **9a** reacts with the (4-nitrophenyl)diazonium hydrogen sulfate and the *Vilsmeier* reagent to give the



i) 4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>N<sup>⊕</sup><sub>2</sub>. ii) POCl<sub>3</sub>/DMF. iii) H<sub>2</sub>C(CN)<sub>2</sub>/NEt<sub>3</sub>.

violet 5-arylazo dye **15** and the imidazole-carbaldehyde **16**, respectively. The dicarbonitrile **17** was prepared from **16** by condensation with malononitrile.

The preparation and characterization of dyes derived from the new 5-aryl-2-(dialkylamino)-1H-imidazoles 9, as well as the corresponding carbaldehydes 16, was extended and will be published in a forthcoming paper.

The authors thank the Deutsche Forschungsgemeinschaft for a generous financial support.

## **Experimental Part**

General. M.p.: Boëtius heating-table microscope; uncorrected. IR Spectra: in KBr pellets on a Philips FT-IR spectrometer PU 9624. NMR Spectra: Varian 300-MHz spectrometer Gemini 300; chemical shifts in ppm at the  $\delta$  scale. The elemental analyses were performed on a LECO analyser CHNS 932.

3,5-Diaryl-2-(dialkylamino)-1,3-oxazolium Perchlorates 13a - 13t (General Procedure). A mixture of an 1aryl-2-(arylamino)ethanone 12 (0.01 mol) and a N,N-dialkyl-dichloromethaniminium chloride 11 (0.012 mol) in MeCN (50 ml) was heated for ca. 3 h until the evolution of HCl ceased. After addition of aq. HClO<sub>4</sub> (70%, 0.01 mol) to the cooled soln., the crystallization was initiated by addition of Et<sub>2</sub>O. The precipitated oxazolium perchlorate was isolated by filtration, washed with AcOEt, and recrystallized from AcOH. M.p. and anal. data of 13a - 13t are given in Tables 2-4.

Table 3. <sup>1</sup>H- and <sup>13</sup>C-NMR Data of the 4-Aryl-2-(dialkylamino)-1H-imidazoles **9**, the Hydrogenperchlorates **9**•**HClO**<sub>4</sub>, and the 5-Aryl-2-(dialkylamino)-1,3-oxazolium Salts **13** 

| No.                        | $\delta(^{1}\mathrm{H})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | δ( <sup>13</sup> C)                                                     |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 9a                         | 2.68 (s, 2 Me); 7.35 (d, 2 CH); 7.50 (s, 1 CH); 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.9; 115.9; 127.2; 127.4; 129.9; 131.1; 132.7;                         |
|                            | (d, 2 CH); 7.65 (d, 2 CH); 7.82 (d, 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 133.8; 135.2; 138.2; 138.8; 154.3 <sup>a</sup> )                        |
| 9b                         | 0.97 (t, 2 Me); 3.02 (q, 2 CH <sub>2</sub> ); 7.32 (d, 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.1; 45.8; 114.2; 125.9; 126.7; 128.4; 129.5;                          |
|                            | 7.49 ( <i>d</i> , 2 CH); 7.53 ( <i>s</i> , 1 CH); 7.60 ( <i>d</i> , 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 131.2; 132.4; 133.8; 137.1; 151.1 <sup>a</sup> )                        |
|                            | $7.80 (d, 2 \text{ CH})^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |
| 9c                         | 1.79 (quint., 2 CH <sub>2</sub> ); 3.15 (t, 2 CH <sub>2</sub> ); 7.32 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.8; 50.9; 114.8; 126.6; 127.5; 129.1; 130.2;                          |
|                            | 2 CH); 7.38 (s, 1 CH); 7.54 (s, 4 CH); 7.79 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 131.1; 131.8; 133.3; 134.7; 138.3; 150.9 <sup>a</sup> )                 |
|                            | 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
| 9d                         | $2.99(t, 2 \text{ CH}_2); 3.64(t, 2 \text{ CH}_2); 7.34(d, 2 \text{ CH});$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.9; 51.0; 66.7; 66.8; 115.4; 126.2; 126.7; 129.2;                     |
|                            | 7.55 ( <i>d</i> , 2 CH); 7.58 ( <i>s</i> , 1 CH); 7.80 ( <i>d</i> , 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130.4; 130.5; 132.1; 133.2; 134.2; 137.6; 152.0 <sup>a</sup> )          |
| 9e • HClO₄                 | 3.02 (s, 2 Me): 3.25 (s, 1 NH): 7.39 (t, 1 CH): 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.1: 116.7: 126.1: 126.8: 127.7: 129.7: 129.8:                         |
|                            | (t, 2 CH); 7.57 (s, 1 CH); 7.61 (t, 1 CH); 7.64 (t,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130.7; 130.8; 130.9; 136.8; 149.3 <sup>a</sup> )                        |
|                            | 2 CH): 7.73 ( <i>d</i> . 2 CH): 7.77 ( <i>d</i> . 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |
| 9f                         | 2.35 (s, Me); 2.63 (s, 2 Me); 7.13 (t, 1 CH); 7.28 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.0; 42.2; 114.9; 124.7; 125.1; 126.8; 129.0;                          |
|                            | 2 CH): 7.30 (d, 2 CH): 7.34 (s, 1 CH): 7.42 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130.8: 135.8: 136.9: 137.8: 138.2: 150.5 <sup>a</sup> )                 |
|                            | 2  CH; 7.79 (d. 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                   |
| 9g                         | 2.65 (s, 2 Me): 7.16 (t, 1 CH): 7.31 (t, 2 CH): 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.2: 114.7: 125.1: 126.4: 127.0: 129.1: 130.4:                         |
|                            | (s. 1 CH): 7.54 (d. 2 CH): 7.62 (d. 2 CH): 7.80 (d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132.9: 135.5: 138.1: 138.6: 148.2 <sup>a</sup> )                        |
|                            | 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
| 9h+HClO                    | 2.34 (s Me): 3.01 (s 2 Me): 3.26 (s NH): 7.28 (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 2: 41 2: 116 1: 125 0: 126 1: 126 6: 129 4:                          |
| <i>i i i i i i i i i i</i> | 2  CH; 750 (s 1 CH); 755–772 (m 7 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $130.1 \cdot 130.5 \cdot 131.0 \cdot 136.8 \cdot 139.8 \cdot 149.4^{a}$ |
| 9i+HClO                    | $2.32 (s Me) \cdot 2.41 (s Me) \cdot 3.01 (s Me) \cdot 3.27 (s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 1: 21 2: 41 0: 116 2: 124 9: 126 0: 126 6:                           |
| Ji nelo4                   | NH: 7.26 (d. 2 CH): 7.43 (d. 2 CH): 7.46 (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128 7·130 4·131 3·134 3·139 7·140 9·149 1 ª)                            |
|                            | 1  CH); 7.59 (d 2 CH); 7.64 (d 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.7, 100.7, 101.0, 101.0, 105.7, 110.9, 119.1                         |
| 9i                         | $2 36 (s Me) \cdot 2 63 (s 2 Me) \cdot 7 31 (d 2 CH) \cdot 7 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 9 · 42 1 · 115 5 · 124 8 · 126 6 · 129 1 · 129 9 ·                   |
| -J                         | $(d \ 2 \ CH): 7 \ 42 \ (s \ 1 \ CH): 7 \ 44 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ (d \ 2 \ CH): 7 \ 79 \ 79 \ 79 \ 79 \ 79 \ 79 \ 79 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $130.8 \cdot 131.8 \cdot 134.5 \cdot 138.0 \cdot 138.1 \cdot 149.3^{a}$ |
|                            | $(a, 2 \text{ CH})^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150.0, 151.0, 151.0, 150.0, 150.1, 119.5                                |
| 9k                         | 2  GM (s 2 Me): 3.83 (s Me): 7.03 (d 2 CH): 7.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41 6 • 55 4 • 114 9 • 115 2 • 126 1 • 128 4 • 131 2 •                   |
| / <b>N</b>                 | $(d \ 2 \ CH) \cdot 7 \ 35 \ (s \ 1 \ CH) \cdot 7 \ 44 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 7 \ 80 \ (d \ 2 \ CH) \cdot 80 \ (d \ 2 \ CH) \cdot 80 \ (d \ 2 \ (d \ 2 \ CH) \cdot 80 \ (d \ 8)$ | $131.7 \cdot 134.2 \cdot 136.4 \cdot 153.2 \cdot 150.2 \cdot 162.1 a$   |
|                            | (a, 2  CH), (a, 50  (s, 1 CH), (a, 2  CH), (a, 50  (a, 2 CH))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 151.7, 154.2, 150.4, 155.2, 159.2, 102.1                                |
|                            | 2011))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |

| Table 3 | (cont.) |  |
|---------|---------|--|

| 91.HCIO               | $102(t 2 M_{\rm P}) \cdot 239(s M_{\rm P}) \cdot 322(a 2 CH) \cdot 743$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 7 20 9 44 6 117 0 125 5 125 8 127 3                                                                      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                       | $(m \ 3 \ CH) \cdot 7 \ 53 \ (m \ 4 \ CH) \cdot 7 \ 76 \ (d \ 2 \ CH) \cdot 7 \ 82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $12.7, 20.7, 44.0, 117.0, 125.5, 125.0, 127.5, 128.0, 129.2, 130.7, 133.4, 140.0, 147.5^{b}$                |
|                       | (m, 5  CH), 7.55 (m, 7  CH), 7.76 (n, 2  CH), 7.62<br>(c 1 CH): 12.0 (c NH) <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0, 127.2, 130.7, 135.7, 170.0, 177.5                                                                    |
| 0                     | (3, 1  CH), 12.9 (3, 111))<br>172 (quint 2 CH): 2 32 (s Me): 3 11 (t 2 CH):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21 0 25 8 50 8 114 4 125 1 125 8 126 6                                                                      |
| <b>7</b> 111          | 1.72 (quint., 2 CH <sub>2</sub> ), 2.52 (S, Me), 5.11 (l, 2 CH <sub>2</sub> ),<br>7 10 (t 1 CH): 7 20 (s 1 CH): 7 25 (m 4 CH):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.0, 25.8, 50.0, 114.4, 125.1, 125.8, 120.0, 120.0, 130.6, 136.0, 137.1, 137.8, 138.2, 152.1, a)           |
|                       | $7.10(l, 1 \text{ CH}), 7.20(s, 1 \text{ CH}), 7.25(m, 4 \text{ CH}), 7.31(t, 2 \text{ CH}), 7.78(d, 2 \text{ CH})^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 129.0, 150.0, 150.0, 157.1, 157.8, 158.2, 152.1                                                             |
| 0n                    | 1.51(l, 2 CH), 7.70(u, 2 CH))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 8 • 50 0 • 114 1 • 125 1 • 126 8 • 127 3 • 120 0 •                                                       |
| 911                   | $1.70 (quint., 2 CH_2), 5.14 (l, 2 CH_2), 7.15 (s, 1 CH), 7.20 (t, 1 CH), 7.20 (c, 1 CH), 7.50 (c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $25.6, 50.9, 114.1, 125.1, 120.6, 127.5, 129.0, 120.1, 122.0, 125.7, 128.2, 128.6, 151.8^{a}$               |
|                       | 1  CH), 7.29 ( <i>l</i> , 1  CH), 7.50 (S, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150.1, 155.0, 155.7, 156.5, 156.0, 151.8                                                                    |
| 0.0                   | 4  CH, 7.78 ( <i>a</i> , 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.25 ( <i>a</i> Ma) = 2.12 ( <i>t</i> - 2  CH) = 2.25 ( <i>a</i> Ma) = 2.25 ( <i>a</i> | 21 0 25 8 50 7 115 0 125 8 126 5 120 0                                                                      |
| 90                    | $1.75 (quint., 2 CH_2), 2.55 (s, Me), 5.12 (l, 2 CH_2), 7.26 (7.25 (m, 7.CH), 7.77 (d, 2.CH)a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.0, 25.0, 50.7, 115.0, 125.0, 120.5, 129.0,<br>$120.6, 121.5, 124.0, 126.0, 127.0, 120.0, 152.2^{a}$      |
| 0                     | 1.20 - 1.55 (m, 7 CH); 1.77 (u, 2 CH); 2.82 (c Mo);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $150.0; 151.3; 154.9; 150.9; 157.0; 150.0; 152.2^{\circ})$                                                  |
| ч                     | $1.75 (quint., 2 CH_2), 5.15 (l, 2 CH_2), 5.05 (s, Me),$<br>7.02 (d, 2 CH), 7.24 (s, 1 CH), 7.20 (d, 2 CH).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.8, 50.0, 55.8, 115.2, 120.5, 127.0, 128.0,<br>121 4, 122 2, 124 0, 126 9, 152 4, 150 9, 162 0 $^{\circ}$ |
|                       | 7.02(u, 2  CH), 7.24(s, 1  CH), 7.50(u, 2  CH), 7.27(d, 2  CH), 7.70(d, 2  CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 151.4, 152.5, 154.9, 150.8, 152.4, 159.8, 102.0                                                             |
| 0~                    | $1.57(a, 2 CH), 7.70(a, 2 CH)^{+})$<br>1.51(avint - 2 CH) + 2.07(t - 2 CH) + 7.16(t - 2 CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 8. 26 1. 51 8. 114 4.125 2. 125 0. 127 0.                                                                |
| 94                    | 1.51 ( $quml., 5 CH_2$ ), 2.97 ( $l, 2 CH_2$ ), 7.10 ( $l, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.0, 20.1, 51.0, 114.4, 125.2, 125.9, 127.0,<br>120 1, 120 2, 122 9, 125 6, 129 1, 129 9, 152 0 $a$        |
|                       | 1  CH; 7.50 ( <i>l</i> , 2  CH); 7.46 ( <i>s</i> , 1  CH); 7.55 ( <i>a</i> , 2  CH); 7.70 ( <i>l</i>                                                                                                                                                                                                                                                                                                                          | 129.1; 150.5; 152.8; 155.0; 158.1; 158.8; 152.9 )                                                           |
| 0                     | 2  CH, 7.70 ( <i>a</i> , 2  CH), 7.79 ( <i>a</i> , 2  CH) )<br>1 50 (mint 2 \text{ CH}) + 2.06 (t 2 \text{ CH}) + 2.82 (m Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 2. 25 7. 51 1. 55 4. 114 0. 125 4. 126 1. 128 6.                                                         |
| 91                    | $1.50 (quint., 5 CH_2); 2.90 (l, 2 CH_2); 5.85 (s, Me);$<br>7.04 (d, 2 CH); 7.32 (d, 2 CH); 7.42 (s, 1 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.3; 25.7; 51.1; 55.4; 114.9; 125.4; 120.1; 128.0;<br>121 2: 121 7: 124 2: 126 6: 152 6: 150 1: 162 2 $a$  |
|                       | 7.04 (a, 2  CH); 7.52 (a, 2  CH); 7.43 (s, 1  CH);<br>$7.52 (a, 2 \text{ CH}); 7.80 (a, 2 \text{ CH})^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 151.2; 151.7; 154.5; 150.0; 152.0; 159.1; 102.2 ")                                                          |
| 0                     | $(a, 2 C \Pi); (a, 0 C \Pi); (a, 2 C \Pi))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51 0. 66 7. 114 9. 125 2. 126 2. 127 1. 120 1.                                                              |
| 98                    | 2.98 $(l, 2 \in \Pi_2)$ ; 5.02 $(l, 2 \in \Pi_2)$ ; 7.10 $(l, 1 \in \Pi)$ ;<br>7.21 $(l, 2 \in \Pi)$ ; 7.48 $(r, 1 \in \Pi)$ ; 7.52 $(l, 2 \in \Pi)$ ; 7.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51.0; 00.7; 114.6; 125.2; 120.2; 127.1; 129.1;<br>120 4, 122 0, 125 2, 127 7, 128 0, 151 8 <sup>a</sup> )   |
|                       | (1, 2  CH), (1, 40  (s, 1 CH)), (1, 52  (u, 2 CH)), (1, 00  (d, 2 CH)), (1, 00  (d, 2 CH))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150.4, 155.0, 155.5, 157.7, 158.9, 151.8                                                                    |
| 04                    | (u, 2 CH), 7.79 (u, 2 CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 8 • 55 0 • 66 8 • 115 4 • 115 8 • 126 2 • 126 6 •                                                        |
| 91                    | $(1, 2 \text{ CH}), 7, 22 (d, 2 \text{ CH}), 7, 42 (c, 1 \text{ CH}), 7, 52 (d, 2 \text$                                                                                                                                                                                                                                                                                                  | 50.8, 55.9, 00.8, 115.4, 115.8, 120.2, 120.0, 120.2, 120.0, 121.7, 121.9, 124.6, 127.2, 152.1 a)            |
|                       | (u, 2  CH), 7.52 (u, 2  CH), 7.45 (s, 1  CH), 7.52 (u, 2  CH), 7.52 (u,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129.2, 129.9, 151.7, 151.8, 154.0, 157.2, 152.1                                                             |
| 0                     | 2  CH, 7.79 ( <i>u</i> , 2  CH) )<br>3.12 (s NH): 3.26 (s Ma): 3.83 (s Ma): 7.42 (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35 7. 41 3. 117 1. 124 5. 125 0. 127 0. 120 6.                                                              |
| <i>9</i> u            | 3.12 (3, N11), $3.20$ (3, N1c), $3.03$ (3, M1c), $7.42$ ( <i>m</i> , 3 CH), $7.51$ (c 1 CH), $7.68$ (d 2 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $120.0 \cdot 150.6^{a}$                                                                                     |
|                       | $2 23 (g M_{\Theta}) \cdot 2 10 (g NH) \cdot 2 25 (g 2 M_{\Theta}) \cdot 3 82 (g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $127.7, 150.0^{\circ}$                                                                                      |
| JV IICIO <sub>4</sub> | 2.55 (3, Me), 5.10 (3, M1), 5.25 (3, 2 Me), 5.82 (3, Me), 7.46 (c 1 CH), 7.26 (d 2 CH), 7.57 (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.5, 54.9, 40.5, 124.2, 149.0, 115.7, 125.0,<br>127.6, 120.7, 138.8, 140.6 <sup>a</sup> )                  |
|                       | $(a, 2 \text{ CH})^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 127.0, 129.7, 130.0, 149.0                                                                                  |
| 9w.HClO               | $3.06 (s \text{ NH}) \cdot 3.27 (s 2 \text{ Me}) \cdot 3.86 (s \text{ Me}) \cdot 7.48 (d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32 5: 43 0: 115 6: 126 2: 129 0: 131 2: 135 0:                                                              |
|                       | $2 \text{ CH}$ $2 \text{ 771}$ $(s, 2 \text{ MC}), 5.00 (s, \text{MC}), 7.40 (a, 2 \text{ CH}), 7.57 (s, 1 \text{ CH}), 7.71 (d, 2 \text{ CH})^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $136 A \cdot 154 6^{a}$                                                                                     |
| 139                   | 3.05 (s, 2 Me): 7.63 (d, 2 CH): 7.77 (m, 6 CH):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.0 • 118.1 • 123.8 • 125.4 • 129.0 • 129.6 • 130.1                                                        |
| 154                   | $8.34 (s, 1 \text{ CH})^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $135 9 \cdot 134 4 \cdot 135 6 \cdot 142 1 \cdot 154 0^{b}$                                                 |
| 13h                   | $1.12 (t, 2 Me) \cdot 3.42 (a, 2 CH_{2}) \cdot 7.66 (d, 2 CH)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 3: 44 6: 118 4: 123 9: 125 4: 129 2: 129 6:                                                              |
| 150                   | $7.78 (d 2 \text{ CH}) \cdot 7.81 (d 2 \text{ CH}) \cdot 7.01 (d 2 \text{ CH})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $12.5, 44.0, 110.4, 125.5, 125.4, 125.2, 125.0, 130.4, 133.1, 134.3, 136.0, 142.1, 153.5^{b}$               |
|                       | $8.27 (s 1 \text{ CH})^{\text{b}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150.4, 155.1, 154.5, 150.0, 142.1, 155.5                                                                    |
| 13c                   | $115(auint - 3 CH_a): 346(a - 2 CH_a): 7.66(d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 0 · 50 2 · 117 6 · 123 9 · 125 4 · 129 5 · 129 6 ·                                                       |
| 100                   | 2  CH $(778 (d 2  CH); 781 (d 2  CH); 792 (d 2  CH)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $129.8 \cdot 132.0 \cdot 134.3 \cdot 135.7 \cdot 142.3 \cdot 152.0^{b}$                                     |
|                       | 2  CH; 7.76 (a, 2 CH); 7.61 (a, 2 CH); 7.52 (a, 2 CH); 7.52 (a, 2 CH); 8.32 (s 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.0, 152.0, 151.0, 155.7, 112.0, 152.0)                                                                   |
| 13d                   | $346(t, 2CH_{a}): 368(t, 2CH_{a}): 763(d, 2CH):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47 2: 64 7: 117 9: 123 8: 125 6: 128 3: 129 6:                                                              |
| 104                   | $7.78 (s 4 CH): 7.80 (d 2 CH): 8.37 (s 1 CH)^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $130.6 \cdot 132.8 \cdot 134.5 \cdot 135.7 \cdot 142.5 \cdot 153.2^{b}$                                     |
| 13e                   | 3.22 (s, 2 Me): 7.47 – 7.56 (m, 3 CH): 7.68 (t,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.8: 117.6: 123.7: 125.0: 127.2: 129.4: 129.8:                                                             |
|                       | 3 CH): 7.77 (d. 2 CH): 7.83 – 7.86 (m. 2 CH): 8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.1: 130.9: 134.1: 143.0: 154.0 <sup>b</sup> )                                                            |
|                       | $(s, 1 \text{ CH})^{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |
| 13f                   | 2.40 (s. Me): 3.02 (s. 2 Me): 7.45 (t. 1 CH): 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8: 39.7: 117.6: 123.6: 125.0: 126.9: 129.4:                                                              |
|                       | (d, 2 CH); 7.53 (t, 1 CH): 7.63 (d, 2 CH); 7.73 (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.4: 131.6: 140.8: 142.9: 153.9 <sup>b</sup> )                                                            |
|                       | $(2 \text{ CH}); 8.24 (s, 1 \text{ CH})^{\text{b}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ···· ,, -····, -·20, 10000 /                                                                                |
| 13g                   | 3.26 (s, 2 Me); 7.48–7.56 (m. 3 CH): 7.73 (d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0; 117.4; 123.7; 125.0: 129.1: 129.5: 129.9:                                                             |
| 8                     | 2 CH); 7.76 ( <i>d</i> , 2 CH); 7.90 ( <i>d</i> , 2 CH); 8.06 ( <i>s</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.2; 133.0; 135.6; 143.1; 154.0 <sup>b</sup> )                                                            |
|                       | 1 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |
| 13h                   | 2.37 (s, Me); 3.22 (s, 2 Me); 7.35 (d, 2 CH); 7.64-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.1; 39.8; 116.8; 122.3; 123.7; 127.2; 130.0;                                                              |
|                       | 7.70 ( <i>m</i> , 5 CH); 7.84 ( <i>d</i> , 2 CH); 7.96 ( <i>s</i> , 1 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130.1; 130.9; 134.2; 139.7; 143.4; 153.9 <sup>b</sup> )                                                     |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |

| <b>m</b> 1 | 1 0  |       | - 3 |
|------------|------|-------|-----|
| Lah        | 10 3 | lcont | 1   |
| 1uv        | 10 5 | icom. | ,   |

| 13i | 2.37 ( <i>s</i> , Me); 2.42 ( <i>s</i> , Me); 3.02 ( <i>s</i> , 2 Me); 7.37 ( <i>d</i> , 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.7; 20.9; 39.7; 116.7; 122.1; 123.4; 126.7;                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|     | 7.46 ( <i>d</i> , 2 CH); 7.62 ( <i>d</i> , 2 CH); 7.65 ( <i>d</i> , 2 CH); 8.18 ( <i>s</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129.7; 130.2; 131.4; 139.4; 140.6; 143.0; 153.7 <sup>b</sup> ) |
|     | 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |
| 13j | 2.44 (s, Me); 3.22 (s, 2 Me); 7.48 (d, 2 CH); 7.56 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.9; 39.8; 118.3; 124.0; 125.4; 126.9; 129.6;                 |
|     | 2 CH); 7.71 ( <i>d</i> , 2 CH); 7.70 ( <i>d</i> , 2 CH); 8.03 ( <i>s</i> , 1 CH) <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130.5; 131.6; 134.2; 141.0; 142.0; 154.0 <sup>b</sup> )        |
| 13k | 3.04 (s, 2 Me); 3.85 (s, Me); 7.18 (d, 2 CH); 7.63 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.2; 55.7; 114.7; 118.4; 123.8; 125.2; 126.3;                 |
|     | 2 CH); 7.69 ( <i>d</i> , 2 CH); 7.78 ( <i>d</i> , 2 CH); 8.28 ( <i>s</i> , 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128.5; 129.4; 134.0; 141.6; 153.9; 160.6 <sup>b</sup> )        |
| 131 | 1.12 (t, 2 Me); 2.42 (s, Me); 3.42 (q, CH <sub>2</sub> ); 7.47 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.5; 21.0; 44.5; 118.1; 123.6; 125.2; 127.0;                  |
|     | 3 CH); 7.55 ( <i>t</i> , 2 CH); 7.72 ( <i>m</i> , 4 CH); 8.23 ( <i>s</i> , 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 129.5; 129.8; 130.7; 131.9; 141.3; 142.9; 153.5 <sup>b</sup> ) |
| 13m | 1.87 (quint., 2 CH <sub>2</sub> ); 2.41 (s, Me); 3.39 (t, 2 CH <sub>2</sub> ); 7.43 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.9; 25.0; 50.0; 117.2; 123.6; 125.2; 127.5;                  |
|     | 2 CH); 7.45 ( <i>t</i> , 1 CH); 7.54 ( <i>t</i> , 2 CH); 7.63 ( <i>d</i> , 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.4; 129.7; 130.1; 140.9; 143.2; 152.1; 172.0 <sup>b</sup> ) |
|     | 7.72 ( <i>d</i> , 2 CH); 8.30 ( <i>d</i> , 2 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
| 13n | 1.91 (quint., 2 CH <sub>2</sub> ); 3.42 (t, 2 CH <sub>2</sub> ); 7.48 (t, 1 CH); 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.8; 49.9; 116.8; 123.4; 124.8; 129.3; 129.4;                 |
|     | ( <i>t</i> , 2 CH); 7.73 ( <i>d</i> , 4 CH); 7.80 ( <i>d</i> , 2 CH); 8.31 ( <i>s</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 129.5; 129.6; 131.9; 135.4; 143.1; 151.8 <sup>b</sup> )        |
|     | 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |
| 130 | 1.86 (quint., 2 CH <sub>2</sub> ); 2.40 (s, Me); 3.35 (t, 2 CH <sub>2</sub> ); 7.43 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0; 25.0; 50.0; 117.9; 124.1; 125.3; 127.5;                  |
|     | 2 CH); 7.61 ( <i>d</i> , 2 CH); 7.62 ( <i>d</i> , 2 CH); 7.74 ( <i>d</i> , 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.6; 130.2; 130.7; 134.2; 141.0; 142.2; 152.1 <sup>b</sup> ) |
|     | 8.32 (s, 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 13p | 1.86 (quint., 2 CH <sub>2</sub> ); 3.39 (t, 2 CH <sub>2</sub> ); 3.83 (s, Me); 7.15 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.9; 49.9; 55.8; 115.0; 118.0; 124.1; 125.3;                  |
|     | 2 CH); 7.61 ( <i>d</i> , 2 CH); 7.67 ( <i>d</i> , 2 CH); 7.73 ( <i>d</i> , 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125.6; 129.3; 129.6; 134.1; 142.0; 152.2; 160.8 <sup>b</sup> ) |
|     | $8.28 (s, 1 \text{ CH})^{\text{b}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
| 13q | 1.58 (quint., 3 CH <sub>2</sub> ); 3.42 (t, 2 CH <sub>2</sub> ); 7.46 (t, 1 CH); 7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.4; 24.1; 48.2; 117.2; 123.7; 125.0; 128.2;                  |
|     | (t, 2 CH); 7.78 (m, 6 CH); 8.29 (s, 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129.4; 129.9; 130.5; 133.4; 135.5; 143.2; 153.3 <sup>b</sup> ) |
| 13r | 1.56 (quint., 3 CH <sub>2</sub> ); 3.43 (t, 2 CH <sub>2</sub> ); 3.83 (s, Me); 7.19 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.5; 24.2; 48.0; 55.9; 115.5; 118.4; 124.1; 125.4;            |
|     | 2 CH); 7.61 ( <i>d</i> , 2 CH); 7.68 ( <i>d</i> , 2 CH); 7.77 ( <i>d</i> , 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.0; 127.8; 129.6; 134.2; 141.7; 153.1; 160.7 <sup>b</sup> ) |
|     | $8.26 (s, 1 \text{ CH})^{b})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 13s | $3.45 (t, 2 \text{ CH}_2); 3.68 (t, 2 \text{ CH}_2); 7.47 (t, 1 \text{ CH}); 7.54 (t, 1 \text{ CH}); $ | 47.1; 64.7; 117.2; 123.8; 124.8; 128.4; 129.5;                 |
|     | 2 CH); 7.78 ( <i>m</i> , 6 CH); 8.33 ( <i>s</i> , 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130.0; 130.6; 132.8; 135.6; 143.5; 153.2 <sup>b</sup> )        |
| 13t | $3.45 (t, 2 \text{ CH}_2); 3.67 (t, 2 \text{ CH}_2); 3.83 (s, \text{Me}); 7.19 (d,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.9; 55.9; 64.7; 115.6; 118.4; 124.0; 125.5;                  |
|     | 2 CH); 7.62 ( <i>d</i> , 2 CH); 7.67 ( <i>d</i> , 2 CH); 7.79 ( <i>d</i> , 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $126.4; 128.0; 129.6; 134.4; 142.2; 153.2; 160.8^{b}$          |
|     | $8.30 (s, 1 \text{ CH})^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |
| 13u | 3.34 (s, 2  Me); 3.49 (s, Me); 3.74 (s, Me); 7.43 (t, 1  CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.9; 39.7; 117.6; 123.5; 125.1; 129.4; 129.6;                 |
|     | 7.51 $(t, 2 \text{ CH})$ ; 7.63 $(d, 2 \text{ CH})$ ; 7.95 $(s, 1 \text{ CH})^{\text{b}}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142.4; 155.6 <sup>b</sup> )                                    |
| 13v | 2.35 (s, Me); 3.34 (s, 2 Me); 3.38 (s, Me); 7.32 (d, 2 CH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.0; 35.9; 39.7; 52.9; 116.9; 122.4; 123.7; 129.9;            |
|     | 7.53 ( $d$ , 2 CH); 7.88 ( $s$ , 1 CH) <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 139.5; 142.9; 155.6 <sup>b</sup> )                             |
| 13w | 3.34 (s, 2 Me); 3.74 (s, Me); 7.58 (d, 2 CH); 7.66 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.0; 39.7; 118.4; 124.3; 125.5; 129.7; 134.2;                 |
|     | 2 CH); 7.99 (s, 1 CH) <sup>o</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 141.6; 155.8 <sup>°</sup> )                                    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |

<sup>a</sup>) In (D<sub>6</sub>)acetone. <sup>b</sup>) In (D<sub>6</sub>)DMSO.

5-Aryl-2-(dimethylamino)-1,3-oxazoles 14. To a suspension of an 2-amino-1-arylethanone hydrobromide 12•HBr ( $R^1$ =H, 0.01 mol) in MeCN (100 ml), dichloro-N,N-dimethylmethaniminium chloride 11 (R=Me, 2.0 g, 0.012 mol) was added, and the mixture was refluxed until the evolution of hydrochloride has ceased. The resulting suspension was poured onto ice (50 g) and neutralized with aq. NaOH. The oily layer was extracted with Et<sub>2</sub>O ( $3 \times 50$  ml) and dried. After evaporation of Et<sub>2</sub>O, the following oxazoles 14 were obtained as greasy crystals.

2-(Dimethylamino)-5-phenyl-1,3-oxazole (14a). Yield 89%. M.p. 52°. IR: 1625, 1429, 1263, 1141. <sup>1</sup>H-NMR (CDCl<sub>3</sub>): 3.10 (s, 2 Me); 7.03 (s, 1 CH); 7.17 (t, 1 CH); 7.32 (t, 2 CH); 7.45 (d, 2 CH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>): 37.7; 122.4; 122.5; 122.6; 126.5; 128.7; 129.0; 145.2. Anal. calc. for C<sub>11</sub>H<sub>12</sub>N<sub>2</sub>O (188.0): C 70.21, H 6.38, N 14.89; found: C 70.05, H 6.55, N 14.77.

 $\begin{array}{l} 2-(Dimethylamino)\mbox{-}5\mbox{-}(4\mbox{-}methylphenyl)\mbox{-}1\mbox{-}3\mbox{-}oxazole\mbox{(14b)}. Yield\mbox{ 69\%}. M.p.\mbox{ 69\%}. IR: 1626, 1433, 1425, 1263, 1140. {}^{1}H\mbox{-}NMR\mbox{ (CDCl}_3): 2.31\mbox{ ($$s$, Me)$; 3.08\mbox{ ($$s$, 2 Me)$; 6.97\mbox{ ($$s$, 1 CH)$; 7.12\mbox{ ($d$, 2 CH)$; 7.35\mbox{ ($d$, 2 CH)$; 1$$: 161.8. Anal. calc. for $C_{12}H_{14}N_2O\mbox{ (202.0)}: C\mbox{ 71.29}, H\mbox{ 6.93}, N\mbox{ 13.86}; found: C\mbox{ 71.55}, H\mbox{ 7.08}, N\mbox{ 13.74}. \end{array}$ 

Table 4. Most Important IR and MS Data of Some 1,4-Diaryl-2-(dialkylamino)-1H-imidazoles 9 and 3,5-Diaryl-2-(dialkylamino)-1,3-oxazolium Salts 13

| No. | IR [cm <sup>-1</sup> ]                                                                      | MS $[m/z]$ (rel. intensity)                                                                      |
|-----|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 9a  | 1558, 1537, 1496, 1483, 1456, 1433, 1417, 1360, 1149, 1086, 1012, 931, 847, 837, 829        | 331 (100, <i>M</i> <sup>+</sup> ), 207 (30), 195 (19),<br>180 (55), 166 (16), 160 (29), 151 (15) |
| 9b  | 1593, 1579, 1570, 1560, 1529, 1496, 1483, 1460, 1421, 1213, 1088, 834                       | 359 (100, <i>M</i> <sup>+</sup> ), 330 (33), 316 (18),<br>221 (36), 207 (14), 194 (37)           |
| 9c  | 1602, 1579, 1562, 1537, 1494, 1457, 1427, 1408, 1352, 1217, 1091, 1085, 1014, 935, 837, 820 | $357 (100, M^+), 330 (14), 220 (19), 193 (23)$                                                   |
| 9d  | 1560, 1531, 1496, 1485, 1452, 1425, 1113, 1091, 920, 835                                    | $373 (100, M^+), 316 (42)$                                                                       |
| 9f  | 1608, 1570, 1543, 1516, 1454, 1408, 1252, 1234, 1160, 935, 823                              | 277 ( <i>M</i> <sup>+</sup> , 100), 262 (13), 172 (16),<br>159 (40), 145 (12)                    |
| 9k  | 1560, 1537, 1512, 1483, 1444, 1412, 1255, 1155, 1091, 1036, 937, 837                        | 327 (100, <i>M</i> <sup>+</sup> ), 191 (23), 176 (58),<br>160 (11), 121 (19)                     |
| 13a | 1697, 1655, 1493, 1456, 1427, 1284, 1155, 1091, 1012, 939, 922, 837                         |                                                                                                  |
| 13b | 1689, 1653, 1493, 1456, 1211, 1090, 1014, 941, 835                                          |                                                                                                  |
| 13c | 1680, 1645, 1493, 1448, 1313, 1144, 1120, 1091, 1010, 914, 833                              |                                                                                                  |
| 13d | 1697, 1655, 1516, 1464, 1429, 1221, 1155, 1105, 1093, 1082, 941, 922                        |                                                                                                  |
| 13f | 1697, 1655, 1589, 1516, 1493, 1464, 1458, 1427, 1304, 1255, 1093                            |                                                                                                  |
| 13k | 1697, 1655, 1516, 1493, 1456, 1429, 1271, 1221, 1157, 1092, 1010, 941,                      |                                                                                                  |
|     | 924, 829                                                                                    |                                                                                                  |

5-(4-Chlorophenyl)-2-(dimethylamino)-1,3-oxazole (14c). Yield 67%. M.p. 98°. IR: 1635, 1487, 1431, 1280, 1265, 1146, 1091. <sup>1</sup>H-NMR (CDCl<sub>3</sub>): 3.09 (*s*, 2 Me); 7.03 (*s*, 1 CH); 7.27 (*d*, 2 CH); 7.36 (*d*, 2 CH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>): 37.7; 122.8; 123.5; 128.5; 128.8; 131.2; 144.1; 161.9. Anal. calc. for C<sub>11</sub>H<sub>11</sub>ClN<sub>2</sub>O (222.5): C 59.33, H 4.94, N 12.58; found: C 59.45, H 5.12, N 12.38.

5-Aryl-2-(dialkylamino)-3-methyl-1,3-oxazolium Methyl Sulfates 13u - 13w (General Procedure). A soln. of an 1,3-oxazole 14 (0.01 mol) and freshly distilled (MeO)<sub>2</sub>SO<sub>2</sub> (1.4 g, 0.011 mol) in MeCN (50 ml) was refluxed for 2 h. After cooling and addition of Et<sub>2</sub>O, the precipitated oxazolium salt was isolated by filtration and recrystallized from EtOH. M.p. and anal. data of the compounds 13u - 13w are given in Tables 2-4.

1,4-Diaryl-2-(dialkylamino)-1H-imidazoles 9 (General Procedures) Method A:

A mixture of a *N*,*N*-disubstituted *N*-(4-chlorophenyl)guanidine **7** (R = alkyl,  $R^1 = 4-Cl-C_6H_4$ ) and 4-chlorophenacyl bromide **8** (Ar = 4-Cl-Ph) (2.3 g, 0.01 mol) in EtOH (30 ml) was refluxed for 8 h. After standing overnight, the precipitated product was isolated by filtration and recrystallized from aq. EtOH (90%).

*Method B*: A suspension of a 5-aryl-2-(dialkylamino)-1,3-oxazolium salt **13** (0.01 mol) and NH<sub>4</sub>OAc (3.9 g, 0.05 mol) in EtOH (50 ml) was refluxed for 1 h. After cooling, the mixture was alkalized with aq. NH<sub>3</sub>. While crystalline imidazoles were isolated by filtration, oily products were extracted with Et<sub>2</sub>O and precipitated from the Et<sub>2</sub>O soln. as hydroperchlorates after addition of HClO<sub>4</sub> (70%, 0.01 mol) and 5 ml of EtOH. The free imidazoles **9**, as well as their hydrogenperchlorates **9**•**HClO<sub>4</sub>**, were recrystallized from aq. EtOH (90%). M.p. and anal. data are given in *Tables 1, 3* and 4.

*1,4-Bis*(*4-chlorophenyl*)-2-(*dimethylamino*)-5-(*4-nitrophenylazo*)-*1*H-*imidazole* (**15**). A soln. of 4-nitrophenyldiazonium hydrogensulfate, prepared by diazotization of 4-nitroaniline (1.38 g, 0.01 mol) in AcOH (25 ml) and  $H_2SO_4$  (5 ml), was added dropwise to a stirred soln. of *1,4-bis*(*4-chlorophenyl*)-2-(*dimethylamino*)-*1*H-*imidazole* (**9a**; 3.32 g, 0.01 mol) in MeOH (25 ml) at 0°. After 30 min, the mixture was diluted with  $H_2O$  (100 ml) and neutralized with aq. NH<sub>3</sub>. The crystals formed were isolated by filtration, dried, and recrystallized from DMF. Yield: 3.6 g (74%). M.p. 182–183°. UV (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  517 (4.40). <sup>1</sup>H-NMR ((D<sub>6</sub>)DMSO): 2.87 (*s*, 2 Me); 7.26 (*d*, 2 CH); 7.41 (*d*, 2 CH); 7.51–5.59 (*m*, 4 CH); 8.16 (*d*, 2 CH); 8.25 (*d*, 2 CH). Anal. calc. for C<sub>23</sub>H<sub>18</sub>Cl<sub>2</sub>N<sub>6</sub>O<sub>2</sub> (481.0): 57.38, H 3.74, N 17.46; found: C 57.69, H 4.51, N 17.26.

*1,4-Bis*(*4-chlorophenyl*)-2-(*dimethylamino*)-*1*H-*imidazole-5-carbaldehyde* (**16**). To a soln. of **9a** (3.32 g, 0.01 mol) in DMF (25 ml), POCl<sub>3</sub> (3.8 g, 0.025 mol) was added dropwise under stirring. The mixture was kept at 75° for 3 h, poured onto ice (50 g), and neutralized with 0.1N NaOH. The precipitate was isolated by filtration, dried, and recrystallized from EtOH. Yield: 3.24 g (90%). M.p. 196–198°. IR: 1651 (C=O). <sup>1</sup>H-NMR ((D<sub>6</sub>)DMSO): 2.73 (s, 2 Me); 7.49 (d, 2 CH); 7.51 (d, 2 CH); 7.54 (d, 2 CH); 7.82 (d, 2 CH); 9.36 (s, CHO). Anal. calc. for C<sub>18</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>3</sub>O (360.0): C 60.00, H 4.17, N 11.67; found: C 59.91, H 4.43, N 11.71.

2-[1,4-Bis(4-chlorophenyl)-2-(dimethylamino)-1H-imidazole-5-yl]ethene-1,1-dicarbonitrile (17). A mixture of 16 (3.32 g, 0.01 mol), malononitrile (0.8 g, 0.012 mol), and NEt<sub>3</sub> (0.5 ml) in MeCN (25 ml) was refluxed for 1 h. After cooling, the precipitate was isolated by filtration, dried, and recrystallized from EtOH. Yield: 3.6 g (88%). M.p. 227–228°. UV (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  456 (4.31). <sup>1</sup>H-NMR (CDCl<sub>3</sub>): 2.82 (*s*, 2 Me); 6.93 (*s*, 1 CH); 7.28 (*d*, 2 CH); 7.43 (*d*, 2 CH); 7.51 (*d*, 2 CH); 7.54 (*d*, 2 CH). Anal. calc. for C<sub>21</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>5</sub> (408.0): C 61.76, H 3.68, N 17.16; found: C 61.61, H 3.95, N 16.99.

## REFERENCES

- F. R. Lawrence, W. J. Marshall, 'Aniline', in 'Ullmann's Encyclopedia of Industrial Chemistry', VCH, Weinheim, 1985, 5. Edition, Vol. A2, pp. 303–312.
- [2] H. Zollinger, 'Diazo Chemistry', VCH, Weinheim, 1994.
- [3] A. H. Schmidt, Synthesis 1980, 961; K. Y. Law, F. C. Bailey, Can. J. Chem. 1986, 64, 2267; K. Y. Law, F. C. Bailey, Can. J. Chem. 1993, 71, 494.
- [4] D. Thetford, 'Triphenylmethane and Related Dyes', in 'Kirk-Othmer, Encyclopedia of Chemical Technology', Wiley & Sons, New York, 1997, 4. Edition, Vol. 24, pp. 551–572.
- [5] K. Venkataraman, 'The Chemistry of Synthetic Dyes', Academic Press, New York, 1952, Vol. I-VII.
- [6] S. Scheithauer, H. Hartmann, R. Mayer, Z. Chem. 1968, 8, 182; H. Hartmann, J. Prakt. Chem. 1967, 36, 50;
  H. Hartmann, S. Scheithauer, *ibid.* 1969, 311, 827; H. Hartmann, S. Scheithauer, V. Schönjahn, DD 77,263, 1969; Chem. Abstr. 1971, 75, 130,764.
- [7] J. Liebscher, H. Hartmann, DD 123,665, 1975; Chem. Abstr. 1977, 87, 84817.
- [8] J. Teller, H. Dehne, T. Zimmermann, G. W. Fischer, B. Olk, J. Prakt. Chem. 1990, 332, 453; T. Zimmermann,
  G. W. Fischer, J. Teller, H. Dehne, B. Olk, *ibid*. 1990, 332, 723; G. Seybold, DE 3,227,329, 1982; Chem. Abstr. 1984, 100, 122768; D. Keil, H. Hartmann, Liebigs Ann. Chem. 1995, 979.
- [9] E. Bulka, P. Opperman, Z. Chem. 1977, 17, 99; D. Keil, H. Hartmann, Phosphorus, Silicon & Sulfur, in press.
- [10] H. Hartmann, NATO AS/Ser., Ser. 3, 1998, 52, 427.
- [11] F. Effenberger, F. Würthner, Angew. Chem. 1993, 105, 742; ibid., Int. Ed. 1993, 32, 719; F. Würthner, F. Effenberger, R. Wortmann, P. Krämer, Chem. Phys., 1993, 173, 305; C. T. Chen, S. R. Marder, Adv. Mater. 1995, 7, 1030; A. K. Y. Jen, Y. Cai, P. V. Bedworth, S. R. Marder, Adv. Mater. 1997, 9, 132; P. V. Bedworth, Y. Cai, A. Jen, S. R. Marder, J. Org. Chem. 1996, 61, 2242; V. P. Rao, A. K. Y. Jen, K. Y. Wong, K. J. Drost, J. Chem. Soc., Chem. Commun. 1993, 1118; A. K. Y. Jen, V. P. Rao, K. Y. Wong, K. J. Drost, J. Chem. Soc., Chem. Commun. 1993, 90; V. P. Rao, A. K. Y. Jen, K. Y. Wong, K. J. Drost, Tetrahedron Lett. 1993, 34, 1747; V. P. Rao, A. K. Y. Jen, J. B. Caldwell, Tetrahedron Lett. 1994, 35, 3849; R. Kammler, G. Bourhill, Y. Jin, C. Bräuchle, G. Görlitz, H. Hartmann, J. Chem. Soc., Faraday Trans. 2 1996, 92, 945.
- [12] K. Ebel, '1 H-Imidazole', in 'Houben-Weyl, Methoden der Organischen Chemie', Georg Thieme, Stuttgart, 1994, Vol. E8c, pp. 1–215.
- [13] H. Honeck, H. Beyer, Chem. Ber. 1971, 104, 407.
- [14] A. Hetzheim, O. Peters, H. Beyer, Chem. Ber. 1967, 100, 3418.
- [15] A. Dalkafouki, J. Ardisson, N. Kunesch, L. Lacombe, J. E. Poisson, *Tetrahedron Lett.* 1991, 32, 5325; A. Amselem, DOS 2,518,032, 1975; *Chem. Abstr.* 1976, 84, 44066.
- [16] H. Hartmann, R. Mayer, DD 53,075, 1967; Chem. Abstr. 1967, 67, 33841; H. Hartmann, R. Mayer, Z. Chem. 1966, 6, 28.
- [17] J. Liebscher, 'Thiazoles', in 'Houben-Weyl, Methoden der Organischen Chemie', Georg Thieme, Stuttgart, 1994, Vol. E8b, pp. 1–398; R. H. Wiley, D. C. England, L. C. Behr, 'The Preparation of Thiazoles', in 'Organic Reactions', 1951, Vol. 6, p. 367–409.
- [18] R. A. Zingano, F. C. Bennett jr., G. W. Hammar, J. Org. Chem. 1953, 18, 229.
- [19] R. Gompper, O. Christmann, Chem. Ber. 1959, 92, 1945.
- [20] R. Burtless, F. L. Pyman, J. Chem. Soc. 1925, 127, 2012.
- [21] H. Beyer, T. Pyl, H. Lahmer, Chem. Ber. 1961, 94, 3217.
- [22] H. Beyer, A. Hetzheim, H. Honeck, D. L. Ling, T. Pyl, Chem. Ber. 1968, 101, 3151.
- [23] M. Hori, K. Tanaka, T. Kataoka, H. Shimizu, Tetrahedron Lett. 1985, 26, 1321.
- [24] L. A. Kiselev, V. E. Ruchkin, N. N. Osipova, N. N. Melnikov, K. D. Svetsova-Shilovskaja, Zh. Org. Khim. 1966, 2, 2186.
- [25] K. Hirai, T. Ishiba, Chem. Pharm. Bull. 1978, 26, 3017; K. Hirai, T. Ishiba, Heterocycles 1978, 9, 1223.

- [26] A. R. Katritzky, A. Zia, J. Chem. Soc., Perkin Trans 1 1982, 131; J. Heinze, H. Baumgärtel, H. Zimmermann, Chem. Ber. 1968, 101, 3504; S. Lang-Fugmann, '1,3-Oxazole', in 'Houben-Weyl, Methoden der Organischen Chemie', Georg Thieme, Stuttgart, 1993, Vol. E8a, pp. 891–1019.
- [27] Y. Kigugawa, L. A. Cohen, Chem. Pharm. Bull. 1976, 24, 3205.
- [28] G. V. Boyd, 'Oxazoles and their Benzo Derivatives', in 'Comprehensive Heterocyclic Chemistry', Pergamon, New York, 1984, Vol. 6, pp. 177-233.
- [29] D. Mayer, 'Aminoketone', in 'Houben-Weyl, Methoden der Organischen Chemie', Georg Thieme, Stuttgart, 1977, Vol. VII/2c, pp. 2251–2307; D. H. R. Barton, C. Y. Chern, C. Tachdjian, *Heterocycles* 1994, 37, 793.
- [30] H. G. Viehe, Z. Janousek, Angew. Chem. 1973, 85, 837; ibid., Int. Ed. 1973, 12, 806; Z. Janousek, H. G. Viehe, 'The Chemistry of Dichloromethyleniminium Salts', in 'Iminium Salts in Organic Chemistry, Adv. Org. Chem.', John Wiley & Sons, New York, 1976, Vol. 9/1, pp. 343–419.
- [31] M. R. Grimmett, 'Imidazoles and their Benzo Derivatives', in 'Comprehensive Heterocyclic Chemistry', Pergamon, New York, 1984, Vol. 5, pp. 345–498.
- [32] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. Am. Chem. Soc. 1985, 107, 3902; MOPAC 6, J. J. P. Stewart, F. J. Seiler Research Lab., public domain version for MS-DOS.

Received August 16, 1999